Kamis, 06 Februari 2020

TRIGONOMETRI 001



Trigonometri berasal dari dua suku kata yaitu trigonos dan metros. Trigonos berarti segi tiga sedangkan metros berarti ukuran. Oleh karena itu, trigonometri berupakan cabang ilmu matematika yang membahas tentang ukuran-ukuran segitiga.
Berikut ini akan dijelaskan beberapa hal yang berkaitan tentang trigonometri.

A.  Ukuran Sudut

1.  Ukuran Derajat

Besar sudut dalam satu putaran adalah 360°. Berarti 1°= 1/360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ‘ ) dan detik ( “ ).
Hubungan ukuran sudut menit, detik, dan derajat adalah:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhV8bbilxRYfLY2EI061rZ0Y3i9DPSzQVDuylygr3L1wXtmc7bQRWf-BPHAbXtnPeyWhm4_OKo_u3BeTxkFkBTDowZ70L_hBYm3cgDEOef2dxwIrhUDmAZD_p3-Nvbac0j3PTHLJ2DpG3hz/s1600/Gambar+Trigonometri+1.jpg
2.  Ukuran Radian

Satu radian adalah besar sudut pusat busur lingkaran yang panjangnya sama dengan jari-jari.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEijvk8tGibZTx51U_n7zHkmFxppgauW_nX198AAMcjLASPUmy6zZ5tMJFRrlLBtPwsc86f5F4ip4ekIKV5CecI29iH6_xBsV4QOWFF-KGVZc2ybTnteA9fMBKECR9HqA-M8dE0SJy3btUj1/s1600/Gambar+Trigonometri+2.jpg

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiWwU5ZLQvlqVxr7P_7CrWMYr_6VPR7BnkoP-x-E8Zc_vP84v83sExxdNDC9yX975vFH7x599z436Ubvdv-C2qtfkzK-DhEk9JhFa6fa426LZxet_x4bNZvgKh6aYIH3OAPP7FpbnS8foST/s1600/Gambar+Trigonometri+3.jpg

3.  Hubungan Derajat dengan Radian

Untuk mengubah sudut sebesar �� ke dalam satuan radian, menggunakan rumus:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjaok87d-vn7Ed2XySG-BmFnM_04X5pvxOKasRyN1PAiCN9-1t1nScqHy88t7m4KEejr8uSacCL19MNCb7mn0rWeZ0gjXBee6Yd6tGvwJ0gBVA3yPOgD8fMCN8G2cLGYs59emoeJjgVIJ9I/s1600/Gambar+Trigonometri+4.jpg

Dan untuk mengubah sudut sebesar X radian ke dalam satuan derajat, menggunakan rumus:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh5UonKvLZ2G9w29WXO4jQjD7YlwgsoHcPbRyj_IcP3Dy5JQQZPNgWMy69hEId2BJvhPMO5BXnhb7dfL9hw_xmZf_ATEWEj-J0Lx0VgrM1Nkw7g9CVGYfPdxJvNecPmyL9ofePxG60ggqOl/s1600/Gambar+Trigonometri+5.jpg
Contoh Soal

1.     Nyatakan sudut 0,65 radian dalam satuan derajat!
Jawab :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg3OKuzU0UD0fDjNiEiSZwS-AeieybL0Rve_dIuJFmeB82ZZZCsdwQbwXzo581UFxRTREibJSkfHQd2U-7MtqpHFrgKAeng_HnCGYNtq-BxR6tqXixb9XxSC5HiLGE9zsA4aw3vAdUO00J9/s1600/Gambar+Trigonometri+6.jpg
2.     Nyatakan sudut 154° ke satuan radian!
Jawab:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhxGk7XKVOmxQZYsrVYNmbDFTPgtHFxR4Pg7ZPBVXFB-6LhdflZ8REnPvR-vl2YU78iBoI4AR7F4wW-MqABrANMyRsS3L2Spvo4jdEJU7YW9M0QhRJknW_nVDFXAzS15YUV4q4E8m-D2pQ-/s1600/Gambar+Trigonometri+7.jpg


A. Perbandingan Trigonometri
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhSYZDGUs5S9TZIbW6qlqCBysFRJUABfeRfJWzF403sD1tjowXwcGPFkU42MXr8I5eUEjG92YS8CIPHn08cMbcc8Hveme0ZlflfLetgafjZT8Vn8B6NLGdcoVCPCwmGHtnfkec5Vmr0BKs/s1600/1.jpg

Jadi, untuk memudahkan menghafal rumus Perbandingan Trigonometri menjadi:

Sin ⁡a=DeMi 
cos ⁡a=SaMi
tan⁡ a=DeSa


Contoh  Soal Perbandingan trigonometri

Suatu segituga KLM yang siku-siku di L diketahui panjang KL = 14 cm dan LM = 48 cm. Tentukan panjang KM dan carilah nilai sin a, cos a tan a.

Jawab :

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi1U0T3TVeTLvKVZGhFX8dpREeZvsdHeVINOOoWk6AmXXES49E7ipYospvYn7fOso0zKJDt_lyYl_9GEYkdQFiJT4Wn0DjbvLx99_9jfo5cIfSCgv7ss9exKSxlWShzOKD4BCm5jGG0It4/s1600/1.1.jpg

Gambar 1
KM = √(〖KL〗^2+〖LM〗^2 )
=√(〖14〗^2+〖48〗^2 )=√(196+2304)
=√2500=50 cm

Maka panjang KM = 50 cm


Sin a=y/r  =Depan/Miring         Sin a=14/50  =7/25
cos ⁡a=x/r=Samping/Miring  cos ⁡a=48/50=24/25
 Tan ⁡a=y/x=Depan/Samping  Tan⁡ a=14/48=7/24

B. Tanda Tanda Perbandingan Trigonometri

Untuk memudahkan dalam mengingat tanda (+/ - ) pada masing masing kudran maka bisa dibuat seperti gambar di samping.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhnBEarHhez8tJlKNTsROoG6KXEwMH8a9zJpQE9fDp-NiMgAjPKXSPfVUPhtAh-mB3jKdvGRB6DOBDZ2iEPfkHyTwnr2RB70r35HvMoDmFwRn5r6Y4gPmzcpuHB2WQ_7fwSfVCxnfhCUwk/s1600/2.jpg

Gambar 2

Gambar tersebut maksudnya pada kuadran I semua fungsi trigonometri bernilai positif (+), pada kuadran II yang bernilai positif (+) hanya fungsi Sin yang lain bernilai negatif (-),  pada kuadran III yang bernilai positif (+) hanya fungsi Tan yang lain bernilai negatif (-),  pada kuadran IV yang bernilai positif (+) hanya fungsi Cos yang lain bernilai negatif (-). Bisa disingkat dengan KoTaSiALL

Fungsi Trigonometri Sudut-Sudut Istimewa dan Trigonometri dari sudut yang Berelasi

Dalam fungsi trigonometri terdapat sudut-sudut istimewa yakni 0°,30°,45°,60°,90°  yang memiliki nilai perbandingan trigonometri sebagai berikut.

∝ 0°    30°        45°       60°          90°
Sin 0     1/2              1/2 √2       1/2 √3 1
Cos 1 1/2 √3     1/2 √2       1/2         0
Tan 0 1/3 √3       1       √3        ∞


Trigonometri dari sudut yang Berelasi

Sedangkan untuk menghitung sudut yang berada diluar kuadran I, bisa dicari dengan menggunakan rumus sudut berelasi. Rumus sudut berelasi memudahkan dalam mencari nilai perbandingan trigonometri suatu sudut yang berada di kuadran II, III dan IV atau sudut negatif(-).

Berikut rumus sudut yang berelasi pada Trigonometri

Untuk Sudut (90-a)
 Sin (90-a) = Cos a
 Cos (90-a) = Sin a
 Tan (90-a) = Cot a
  
Untuk Sudut (180-a)
 Sin (180-a) = Sin a 
 Cos (180-a) =- Cos a
 Tan (180-a) = - tan a

Untuk sudut (180+a)
 Sin (180+a) = -sin a
 Cos (180+a) = - cos a
 Tan (180+a) = tan a

Untuk sudut (-a) dan sudut (360-a)
 Sin (360-a) = -sin a          Sin (-a)= -sin a
        Cos (360-a) = Cos a  Cos (-a) =cos a
 Tan (360-a) = - tan a  Tan (-a)= -tan a


Contoh Soal :
1. Diketahui segitiga DEF dengan sudut E= 45° dan FU adalah garis tinggi segitiga itu dari sudut F.
Jika panjang EF = a, dan DU = 5/2 a√2 cm, maka hitunglah tinggi DF.
Jawab :


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipBvOBVzyESp8NiXhiyL3yzZKwcrJlnD5VmDjBKbRw5y9wCdYHYfsW-VoTQ4BlulN3kVWARATYdcQx-tmuTtr0O3oFIcLsUm5381NqpeWO-FqBuZxtWLSlyHoKl1tSCNEJw0-gAAlIOJ8/s1600/3.jpg

Lihat segitiga EFU.

Sin  45°= FU/EF
↔FU=EF.sin⁡〖45°〗=a/2 √a
Lihat segitiga DFU

DF=√(〖FU〗^2+〖UD〗^2 )
     =√(〖(a/2 √a)〗^2+〖(5/2 a√2)〗^2 )
     =√(〖25/2 a〗^2+a^2/2)
     =√(13a^2 )=a√13


2. Nilai sin 750°, adalah ...

Jawab :

Karena didalam soal, sudutnya lebih dari 360°, maka sudut itu dikurangi dengan 360°,, maka :

Sin 750°= Sin (750-2.360)
=sing 30= ½

3. Jika k di kuadran II dan tg k =x, maka sin k =...
buatlah segitiga :

AC = √(1^2+a^2 )=√(a^2+1^2 )
Maka sin k = BC/AC=a/√(a^2+1^2 )


C. Identitas Trigonometri

 Sin^2 A+Cos^2  A=1
 Sin 2A = 2 Sin A cos A
 Cos 2A = =1-2 Sin^2⁡A=2  cos^2⁡A-1

D. Rumus jumlah dan selisih sudut 

 Sin (a+b) = Sin a cos b + cos a sin b
 Sin (a-b) = Sin a cos b - cos a sin b
 Cos (a+b) = Cos a cos b - Sin a sin b
 Cos (a-b) = Cos a cos b + Sin a sin b
 Tan (a+b) = (tan⁡a+tan⁡b)/(1-tan⁡a  tan⁡b )
 Tan (a-b) = (tan⁡a-tan⁡b)/(1+tan⁡a  tan⁡b )

Contoh :

1. Jika sin a = 6/10 dan cos b = 12/13, jika a dan b adalah sudut lancip. maka hitunglah
 a. Sin (a+b)
 b. cos (a+b)
 c. tan (a+b)
Jawab :

Jika sin a = 6/10, maka
cos a = 8/10
tan a = 6/8

Jika cos b = 12/13, maka :
sin b = 5/13
tan b = 5/12

a. Sin (a+b) = Sin a cos b + cos a sin b
                    = (6/10).(12/13) +(8/10).(5/13)
                    = (72/130)+(40/130)
                    =112/130

b. Cos (a+b) = Cos a cos b - Sin a sin b
                     =(8/10).(12/13)-(6/10).(5/13)
                     =(96/130) - (30/130)
                     =66/130

c. Tan (a+b) = (tan⁡a+tan⁡b)/(1-tan⁡a  tan⁡b )
                   =(6/8+5/12)/(1-6/8.5/12  )=40/32

2. Tentukan nilai cos 75, carilah tanpa menggunakan kalkulator.

Jawab :

Cos 75 = cos (45+30)
Cos (45+30) = Cos 45 cos 30 - Sin 45 sin 30
                     =(1/2 √2).(1/2 √3)-(1/2 √2).(1/2)
                     =1/2 √2 (1/2 √3-1/2)
                     =1/4 √2(√3-1)

3. Diketahui sin a = 3/5 dan tan b = 8/15, jika a dan b adalah sudut lancip, maka hitunglah :
 a. sin (a-b)=
 b. cos (a-b)
 c. tan (a-b)

Jawab :

Jika diketahui : 
sin a =3/5,  cos a =4/5   tan = 3/4
tan b = 8/15 sin b = 8/17  cos b = 15/17

a. sin (a-b) = Sin a cos b - cos a sin b
                  = (3/5).(15/17)-(4/5).(8/17)
                  =(45/85)-(32/85)=13/85

b. cos (a-b) = Cos a cos b + Sin a sin b
                   = (4/5).(15/17)+(3/5).(8/17)
                   =(60/85)+(24/85)=84/85

c. tan (a-b) = (tan⁡a-tan⁡b)/(1+tan⁡a  tan⁡b )
                 =(3/4-8/15)/(1+3/4.8/15)=13/36

4. Hitunglah nilai cos 24 +sin 24 tan 12
Jawab :

cos 24 +sin 24 . tan 12 = cos 24 +sin 24 . (sin 12)/cos⁡12 
                                     =(cos⁡24.cos⁡12+sin⁡〖24.sin⁡12 〗)/cos⁡12 
                                     =cos⁡(24-12)/cos⁡12 
                                     =cos⁡12/cos⁡12 =1
E. Rumus sudut rangkap dan Setengah

 Sin 2A = 2 Sin A cos A
 Cos 2A =  cos^2⁡A-Sin^2⁡A=1-2 Sin^2⁡A=2  cos^2⁡A-1
 tan 2A =  (2 tan⁡A)/(1-tan^2⁡A )
 Sin 3A = 3 Sin A – 4 Sin^3⁡A
 Cos 3A = 4 Cos^3⁡A – 3 Sin A
 tang 3A =  (3 tan⁡A-Tan^3⁡A)/(1- Tan^3⁡A )
 Sin  1/2 A=±√((1-cos⁡A)/2)
 Cos  1/2 A=±√((1+cos⁡A)/2)
 tan⁡〖1/2 A〗=±√((1-cos⁡A)/(1+cos⁡A ))=(Sin A)/(1+cos⁡A )=(1-cos⁡A)/sin⁡A 

Contoh :

1. Jika diketahui tan A = ¾ dan A adalah sudut lancip, carilah nilai:
 a. sin 2A
 b. cos 3A
 c. tan ½ A
        
Jawab :

Diketahui A adalah sudut lancip dan tan A = ¾ , maka sin A = 3/5 dan cos A = 4/5.

a. Sin 2A = 2 Sin A. cos A
                = 2 (3/5) . (4/5)
                = 24/25 

b. cos 3A= 4 cos^3⁡A-3 cos⁡A
               =4(4/5)^3-3(4/5)=196/25 

c. tan ½ A =(1-cos⁡A)/sin⁡A =(1-(4/5))/(3/5)=1/3

F. Rumus hasil kali sinus dan kosinus

 2 sin A cos B = Sin (A+B) + Sin (A-B)
 2 Cos A Sin B = Sin (A+B) - Sin (A-B)
 2 Cos A cos B = Cos (A+B) + Cos (A-B)
 2 sin A Sin B = - Cos (A+B) + Cos (A-B)

Contoh :

1. Hitunglah nilai dari :
 a. 2 sin 8a cos 2a
 b. cos 3a cos 2a
 c. 2 sin 105 cos 15
 d. cos 60 sin 30

Jawab :
a. 2 sin 8a cos 2a = Sin (8a+2a) + Sin (8a-2a)
                             =sin 10a +sin 6a

b. cos 3a cos 2a = Cos (3a+2a) + Cos (3a-2a)
                          = cos 5a + cos a

c. 2 sin 105 cos 15 = Sin (105+15) + Sin (105-15)
                               = sin 120 + sin 90
                               =1/2 3 + 1

d. cos 60 sin 30 = Sin (60+30) - Sin (60-30)
                          = sin 90 – sin 30
                          = 1- ½ = ½ 
G. Rumus jumlah dan selisih sinus dan kosinus
 Sin A + Sin B = 2 Sin ½ (A+B) cos ½ (A-B)
 Sin A - Sin B = 2 Cos ½ (A+B) Sin ½ (A-B)
 Cos A + Cos B = 2 Cos ½ (A+B) cos ½ (A-B)
 Cos A - Cos B = - 2 Sin ½ (A+B) cos ½ (A-B)

Contoh :
 1. Sin 90 – sin 30
 2. sin 180 + sin 120
 3. cos 90 + cos 30
 4. Cos 75 – cos 15

Jawab:
 1. Sin 90 – sin 30 = 2 Cos ½ (90+30) Sin ½ (90-30)
                                     = 2 cos ½ (120) Sin ½ (60)
                                     = 2 cos 60 sin 30
                                     = 2  (1/2).1/2=1/2

 2. sin 180 + sin 120 =2 Sin ½ (180+120) cos ½ (180-120)
                                         = 2 sin ½ (300) cos ½ (60)
                                         = 2 sin 150 cos 30
                                         = 2 (½). 1/2 √3=1/2 √3  

 3. cos 90 + cos 30= 2 Cos ½ (90+30) cos ½ (90-30)
                                     = 2 cos ½ 120 cos ½ 60
                                     = 2 cos 60 . cos 30
                                     = 2 (½). 1/2 √3=1/2 √3

 4. Cos 75 – cos 15 = - 2 Sin ½ (75+15) cos ½ (75-15)
                                      = - 2 sin ½ 90 cos ½ 60
                                      = -2 sin 45 cos 30
                                      =-2 (1/2 √2).(1/2 √3)=1/2 √6

Tidak ada komentar:

Posting Komentar

DINAMIKA ROTASI DAN KESETIMBANGAN BENDA TEGAR #PART 6

TITIK BERAT BENDA Hallo sobat blog halaman sekolah pada kegiatan pembelajaran kali ini, kita akan mempelajari tentang keseimbangan benda te...